2 0 Fe b 20 07 ASYMPTOTICS OF PLANCHEREL – TYPE RANDOM PARTITIONS
نویسندگان
چکیده
We present a solution to a problem suggested by Philippe Biane: We prove that a certain Plancherel–type probability distribution on partitions converges, as partitions get large, to a new determinantal random point process on the set Z+ of nonnegative integers. This can be viewed as an edge limit transition. The limit process is determined by a correlation kernel on Z+ which is expressed through the Hermite polynomials, we call it the discrete Hermite kernel. The proof is based on a simple argument which derives convergence of correlation kernels from convergence of unbounded self–adjoint difference operators. Our approach can also be applied to a number of other probabilistic models. As an example, we discuss a bulk limit for one more Plancherel–type model of random partitions.
منابع مشابه
Asymptotics of Plancherel – Type Random Partitions
We present a solution to a problem suggested by Philippe Biane: We prove that a certain Plancherel–type probability distribution on partitions converges, as partitions get large, to a new determinantal random point process on the set Z+ of nonnegative integers. This can be viewed as an edge limit transition. The limit process is determined by a correlation kernel on Z+ which is expressed throug...
متن کاملAsymptotics of Plancherel Measures for Symmetric Groups
1.1. Plancherel measures. Given a finite group G, by the corresponding Plancherel measure we mean the probability measure on the set G∧ of irreducible representations of G which assigns to a representation π ∈ G∧ the weight (dim π)/|G|. For the symmetric group S(n), the set S(n)∧ is the set of partitions λ of the number n, which we shall identify with Young diagrams with n squares throughout th...
متن کاملStrong asymptotics of Laguerre-type orthogonal polynomials and applications in random matrix theory
We consider polynomials orthogonal on [0,∞) with respect to Laguerre-type weights w(x) = xe, where α > −1 and where Q denotes a polynomial with positive leading coefficient. The main purpose of this paper is to determine Plancherel-Rotach type asymptotics in the entire complex plane for the orthonormal polynomials with respect to w, as well as asymptotics of the corresponding recurrence coeffic...
متن کاملDiscrete orthogonal polynomial ensembles and the Plancherel measure
We consider discrete orthogonal polynomial ensembles which are discrete analogues of the orthogonal polynomial ensembles in random matrix theory. These ensembles occur in certain problems in combinatorial probability and can be thought of as probability measures on partitions. The Meixner ensemble is related to a two-dimensional directed growth model, and the Charlier ensemble is related to the...
متن کاملJack Deformations of Plancherel Measures and Traceless Gaussian Random Matrices
We study random partitions λ = (λ1, λ2, . . . , λd) of n whose length is not bigger than a fixed number d. Suppose a random partition λ is distributed according to the Jack measure, which is a deformation of the Plancherel measure with a positive parameter α > 0. We prove that for all α > 0, in the limit as n → ∞, the joint distribution of scaled λ1, . . . , λd converges to the joint distributi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007